random access - ترجمة إلى الهولندية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

random access - ترجمة إلى الهولندية

ABILITY TO ACCESS AN ARBITRARY ELEMENT OF A SEQUENCE IN EQUAL TIME
Random-access storage; Random access file; Random-access; Random I/O; Random read; Random write; Direct access (computing)
  • Random access compared to [[sequential access]]

random access         
directe/vrije toegang (v. h. lees- en schrijfgeheugen)
Random Access Memory         
  • VEB Carl Zeiss Jena]] in 1989
  • DRAM Cell (1 Transistor and one capacitor)
  • These IBM [[tabulating machine]]s from the mid-1930s used [[mechanical counter]]s to store information
  • heatsink]]
  • SRAM Cell (6 Transistors)
  • desktop RAM]].
  • server]]s.
FORM OF COMPUTER DATA STORAGE
R.A.M.; Shadow Random Access Memory; Memory wall; Shadow ram; Shadow RAM; Shadow random access memory; Random-Access Memory; RAM chip; Random Access Memory; RAM (memory); Sigmaquad; Random access memory; Single sided RAM; Single-sided RAM; Single sided random access memory; Single-sided random access memory; RAM memory; Computer RAM memory; RAM; Memory bottleneck; History of random-access memory; RAM IC; RAM stick
willekeurig opvragen van geheugen (bij computers-geheugen voor lezen en schrijven, geheugen dat direct een willekeurige toegang tot alle gegevens mogelijk maakt)
Fast Page Mode         
  • [[MoSys]] MDRAM MD908
  • accessdate=2022-03-09}}</ref> (lower edge, right of middle).
  • 1 Mbit high speed [[CMOS]] pseudo static RAM, made by [[Toshiba]]
  • NMOS]] DRAM cell. It was patented in 1968.
  • die]] of a Samsung DDR-SDRAM 64MBit package
  • Inside a Samsung GDDR3 256&nbsp;MBit package
  • A 512 MBit [[Qimonda]] GDDR3 SDRAM package
  • Writing to a DRAM cell
RANDOM-ACCESS MEMORY THAT STORES EACH BIT OF DATA IN A SEPARATE CAPACITOR WITHIN AN INTEGRATED CIRCUIT
DRAM (memory); Pseudostatic RAM; PSRAM; Pseudostatic Random Access Memory; Window RAM; Dynamic RAM; EDO RAM; Fast Page Mode DRAM; FPM RAM; FPM DRAM; Fast Page Mode RAM; BEDO (RAM); MDRAM; Row Access Strobe; Column Access Strobe; CAS access time; Precharge interval; Row address select; Column address select; 1T DRAM; DDRAM; D-RAM; EDO DRAM; Fast page mode; Page mode memory; Extended Data Out RAM; BEDO RAM; Burst EDO; Multibank DRAM; Intel 1102; Burst EDO DRAM; Memory Timing; Dynamic Random Access Memory; FPRAM; Dynamic random access memory; Extended data out DRAM; Extended Data Out DRAM; Dynamic Random access memory; Static column RAM; Memory row; DRAM row; Row activation; WRAM (memory); 1T1C; 1t1c; 3T1C; Page mode RAM; Page mode DRAM; DRAM; D. R. A. M.; D.R.A.M.; DRAM memory; Asynchronous DRAM; EDO memory; Fast page mode DRAM; Window DRAM; Video DRAM; Nibble mode; EDO SGRAM
snelle paginawerkwijze, soort van dynamische RAM die snelle toegang tot gegevens mogelijk maakt

تعريف

random access
¦ noun Computing the process of transferring information to or from memory in which every memory location can be accessed directly rather than being accessed in a fixed sequence.

ويكيبيديا

Random access

Random access (more precisely and more generally called direct access) is the ability to access an arbitrary element of a sequence in equal time or any datum from a population of addressable elements roughly as easily and efficiently as any other, no matter how many elements may be in the set. In computer science it is typically contrasted to sequential access which requires data to be retrieved in the order it was stored.

For example, data might be stored notionally in a single sequence like a row, in two dimensions like rows and columns on a surface, or in multiple dimensions. However, given all the coordinates, a program can access each record about as quickly and easily as any other. In this sense, the choice of datum is arbitrary in the sense that no matter which item is sought, all that is needed to find it is its address, i.e. the coordinates at which it is located, such as its row and column (or its track and record number on a magnetic drum). At first, the term "random access" was used because the process had to be capable of finding records no matter in which sequence they were required. However, soon the term "direct access" gained favour because one could directly retrieve a record, no matter what its position might be. The operative attribute, however, is that the device can access any required record immediately on demand. The opposite is sequential access, where a remote element takes longer time to access.

A typical illustration of this distinction is to compare an ancient scroll (sequential; all material prior to the data needed must be unrolled) and the book (direct: can be immediately flipped open to any arbitrary page). A more modern example is a cassette tape (sequential — one must fast forward through earlier songs to get to later ones) and a CD (direct access — one can skip to the track wanted, knowing that it would be the one retrieved).

In data structures, direct access implies the ability to access any entry in a list in constant time (independent of its position in the list and of the list's size). Very few data structures can make this guarantee other than arrays (and related structures like dynamic arrays). Direct access is required, or at least valuable, in many algorithms such as binary search, integer sorting, or certain versions of sieve of Eratosthenes.

Other data structures, such as linked lists, sacrifice direct access to permit efficient inserts, deletes, or re-ordering of data. Self-balancing binary search trees may provide an acceptable compromise, where access time is not equal for all members of a collection, but the maximum time to retrieve a given member grows only logarithmically with its size.

أمثلة من مجموعة نصية لـ٪ 1
1. Price fixing in the dynamic random access memory market led to higher prices of some personal computers.
2. International Trade Commission (USITC) in the countervailing duty investigation on dynamic random access memory semiconductors (DRAMs) from Korea.
3. Mitsubishi Electric declined 3.' per cent to Y'10 after saying the US Justice department was looking at its dynamic random access memory operations.
4. It has been traditionally a memory chip maker focused on Dynamic Random Access Memory (Dram) chips for PCs but it has moved into other areas in recent years.
5. Like other global chipmakers, the South Korean company has suffered this year from falling prices of dynamic random access memory (D–ram) chips amid a supply glut.